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Abstract

We are in the midst of “the microbiome revolution”—not a day goes by
without some new revelation on the potential role of the gut microbiome in
some disease or disorder. From an ever-increasing recognition of the many
roles of the gut microbiome in health and disease comes the expectation
that its modulation could treat or prevent these very same diseases. A
variety of interventions could, at least in theory, be employed to alter the
composition or functional capacity of the microbiome, ranging from diet to
fecal microbiota transplantation (FMT). For some, such as antibiotics,
prebiotics, and probiotics, an extensive, albeit far from consistent, literature
already exists; for others, such as other dietary supplements and FMT,
high-quality clinical studies are still relatively few in number. Not
surprisingly, researchers have turned to the microbiome itself as a source
for new entities that could be used therapeutically to manipulate the
microbiome; for example, some probiotic strains currently in use were
sourced from the gastrointestinal tract of healthy humans. From all of the
extant studies of interventions targeted at the gut microbiome, a number of
important themes have emerged. First, with relatively few exceptions, we
are still a long way from a precise definition of the role of the gut
microbiome in many of the diseases where a disturbed microbiome has
been described—association does not prove causation. Second, while
animal models can provide fascinating insights into microbiota—host
interactions, they rarely recapitulate the complete human phenotype. Third,
studies of several interventions have been difficult to interpret because of
variations in study population, test product, and outcome measures, not to
mention limitations in study design. The goal of microbiome modulation is a
laudable one, but we need to define our targets, refine our interventions,
and agree on outcomes.
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Introduction: an overview of the gut microbiome
Strictly speaking, the term “microbiome” refers to the collection
of genomes from all micro-organisms in a given environment
whereas the term “microbiota” refers to all the micro-organisms
found in the environment. In practice, these terms are often used
interchangeably. The term microbiota has replaced “flora” in
order to emphasize the diversity of microbiota and, in particular,
that the human intestinal microbiota normally consists not just
of bacteria but also of archaea, viruses, fungi, and multicellular
parasites. We now know that it represents a highly evolved and
complex ecosystem that plays an important role in the devel-
opment and maintenance of homeostasis'”. Our understand-
ing of the composition and functions of the gut microbiome has
been permitted by dramatic and ever-evolving technologies that
identify micro-organisms and describe their genetic makeup
and metabolism’. We can now annotate, to an ever-increasing
depth of detail, what a given microbiome contains, what its
constituents are capable of doing (through an interrogation of
their genomes), and what they actually produce (employing
metabolomics and other techniques). These rapid advances
have been facilitated by equally important advances in infor-
matics which allow us to make sense of the enormous
databases that microbiota studies generate; techniques such as
network analysis and machine learning help to provide mean-
ingful interpretations™. From a variety of laboratory models,
such as germ-free and humanized, as well as selective knock-
out, animal (mostly mouse) models®, insights have been gained
into the many interactions between the gut microbiome and
the host'”’. For example, studies on germ-free mice have
clearly demonstrated the negative impact of the absence of
microbiota on the development and maturation of the immune
system>*’. Now we learn, again from animal models, of the
role of the gut microbiome in the development and ongoing
functionality of the central nervous system'’. Although such
studies enable considerable flexibility in terms of manipula-
tion of genotype and phenotype, permit a wide range of possible
interventions, and facilitate the collection of various biological
samples, they are not without their shortcomings''~"%, and extrapo-
lations to the human condition must be cautious.

What do we know of the human gut microbiome? There cer-
tainly has been no shortage of studies on the composition and,
to a lesser extent, on the function of the gut microbiome in
humans. There are obvious limitations to the scope of studies that
can be performed in human subjects in contrast to animal and
in vitro models, limitations that the reader must be aware of
in perusing the literature. It must be remembered that this is
a new field and, although progress is being made'”, there is still
a lack of standardization on many of the technical details of
microbiome analysis of human samples”. Although various
studies have described links between an altered microbiota
and not only gastrointestinal disorders but also diseases as
diverse as obesity, diabetes, non-alcoholic fatty liver disease,
cancer, and Parkinson’s disease'®', these are, at best, associa-
tions and do not define causation'®. Furthermore, many limita-
tions in patient selection and study design limit the interpretation
of many of these studies'®.

F1000Research 2020, 9(F1000 Faculty Rev):46 Last updated: 27 JAN 2020

Although there are some divergent studies'’, it is generally

agreed that the human gut is relatively sterile at birth’~** and
acquires its commensal gut microbiome during birth from
the mother’s birth canal and thereafter from its oral intake
and immediate environment™**. Microbial diversity rapidly
increases over the first three years of life and then stabilizes at a
composition that resembles that of an adult™”°; this early and
critical phase in the development of the microbiome may
be especially vulnerable to modulations both beneficial and
detrimental”’. The origins of diseases that become manifest in
adulthood may well be found in the infant microbiome.

Although it is possible that a host of factors influence the
adult microbiome, age, geography, diet, and medications have
emerged as the principal drivers of inter-individual variation®-.
However, large population studies revealed that only a small
proportion of the variation in the microbiome between indi-
viduals could be explained by these and other identifiable
factors***—we have much to learn.

Needless to say, there has, of late, been considerable inter-
est in strategies that modulate the gut microbiota as well as in
microbiota as sources of novel biologically active molecules®—*
and predictors of response to various interventions*'. Our
focus will be on the former: an exploration of strategies to
modulate the microbiome. Here, we will consider the range
of currently available approaches (Table 1), explore their
impacts, and assess the potential for novel interventions.

Modulating the microbiome

In considering any intervention that seeks to successfully and,
we assume, beneficially modulate the microbiome, one needs
to be ever mindful of the complex and dynamic milieu (dis-
cussed in the Introduction) which awaits. Simplistic concepts
of how a given supplement or medication might influence the
microbiota-host interface have generated much hype and even
more disappointment. An appreciation of the range of possible
interactions between an intervention and host diet, genome,
immune system as well as with resident commensals should alert
one to the challenges that lie ahead.

Table 1. Range of interventions that may modulate the
microbiome.

e Lifestyle modification

1. Nutritional intervention and modification; the
importance of diet in the short and the long term

2. Caloric restriction
3. Exercise
4. Other lifestyle factors
e (Clinical interventions
Fecal microbiota transfer
Antibiotics
Prebiotic and probiotics
Pharmabiotics
Impact of non-antibiotic drugs on the microbiome

S S

Page 3 of 12



We limit the term “modulation” to refer to the manipulation of
one or more of the following targets: first, the relative distribu-
tion of bacterial species or strains; second, the actual number
of bacteria; third, their metabolic activity; fourth, their inter-
actions with the host. There may well be other targets that
could be modified—virulence, bacterial antigens, and biofilms,
for example—but we have chosen to limit our scope to the
aforementioned. In theory, the goal of modulation could be to
restore a disrupted or depleted microbiota or transform the exist-
ing status quo to induce a “healthier” bacterial community. It
must be emphasized that these goals are for now overly simplis-
tic and, despite the claims of various commercial entities that
offer microbiome analysis, we are still some way from fully
understanding what constitutes a healthy microbiota through-
out the gastrointestinal tract. When the microbiome is manip-
ulated, attention must always be paid to the potential for
negative outcomes such as the inadvertent introduction or
promotion of pathogenic species, transference of antibiotic resist-
ance, or induction of deleterious host responses.

Lifestyle modification

Diet and the microbiome

It is now abundantly evident that diet is a major modifier,
both in the short and in the long term, of the gut microbi-
ome; this makes absolute sense as, for the most part, micro-
biota depend for their sustenance on what we ingest. Evidence
for the long-term effects of diet comes from studies comparing
communities” or individuals®~**** with very different
dietary habits. These differences reflect lifelong or, at the very
least, very long-term dietary practices. In the shorter term, very
significant changes in diet, such as reducing fiber intake®+*,
excluding gluten*’** or fermentable oligo-, di-,
saccharides and polyols (FODMAPs)*, or dramatically increasing
protein intake™, can also impact microbiome composition.

Oor mono-

Other dietary components have also been shown to influence
microbiota composition””. High-carbohydrate diets promote
the growth of Clostridium cluster XVIII, Lachnospiraceae, and
Ruminococcaceae at the expense of Bacteroides, Bifidobacteria,
and Enterobacteriaceae, whereas diets high in fat promote
bile-tolerant genera such as Alistipes, Bacteroides, and
Bilophila and high-protein diets favor butyrate-producing bac-
teria such as Roseburia, Eubacterium rectale, Faecalbacterium
prausnitzii, Lactobacilli, and Bacteroides* .

The role of dietary fiber in the development and sustenance
of the colonic microbiota has been recognized for decades.
Effects of dietary fiber on colonic transit have been linked with
the preventative effects of fiber in relation to a variety of dis-
eases as well as in the treatment of disorders such as chronic
constipation®. In turn, these beneficial effects may be related to
interactions between fiber and colonic bacteria.

Accumulating evidence indicates that effects of fiber on micro-
biota may be more complex and this should come as no sur-
prise given the heterogeneity of the molecular structures that
are found under the umbrella of the term “fiber””'. For exam-
ple, in the American Gut project, it was found that the number
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of unique plant species consumed, rather than being a vegan or
omnivore, was the best predictor of microbial diversity™. Very
specific effects may be linked to the intake of certain fibers
— for example, in a randomized clinical trial from China among
subjects with type II diabetes mellitus it was found that fibers
that promoted the growth of strains that produced short-chain
fatty acids resulted a greater amelioration of hemoglobin Alc
levels than those that did not™. Clearly, there is much to be
learned about the effects of fibers on gut microbiota.

In addition to fiber, dietary ingredients and food additives have
been shown to have a substantial impact on the gut microbiota*.
Suez and colleagues, for example, found that mice (and, in lim-
ited data, humans) consuming non-caloric artificial sweeteners
were prone to the development of glucose intolerance, pos-
sibly mediated by changes to the intestinal microbiota™.
With regard to other supplements and additives, recent research
has revealed the role of vitamin D in determining microbiota
composition”. Curcumin, which has attracted much interest
of late for potential anti-inflammatory and anti-cancer proper-
ties, also appears to exert anti-bacterial effects. These include
the inhibition of biofilm production and the down-regulation
of quorum-sensing virulence factors such as alginate, swarming,
and motility’**.

It stands to reason that, though less studied, dietary strate-
gies that involve the exclusion of individual but commonly con-
sumed food items or even whole food groups are likely to alter
the composition of microbiota. Some of these approaches may,
at least in theory, pose problems for the microbiota; the exclu-
sion of FODMAPs, gluten, and fiber, for example, has the
potential to deprive important members of the colonic micro-
biome, such as Bifidobacteria, Prevotella, and Bacteroides,
of key nutritional factors such as oligosaccharides and fiber.
Although such effects have been demonstrated in the short
term”, the longer-term implications are unknown. Changes in
the fecal microbiome have indeed been described in relation to
this diet; a reduction in Bifidobacteria being most notable’°'.
The clinical impact of these and other dietary changes in the
long term, in particular, remains unclear”. The Mediterra-
nean diet, for example, has been much lauded for its potential
to reduce risk for cardiovascular disease and colon cancer; yet,
when formally tested, it did not impact on one microbial metab-
olite, trimethylamine N-oxide (TMAO), that has been linked
with risks for both atherosclerosis and colon cancer®.

What is abundantly clear from all of the above observations
is that the impact of diet must be accounted and corrected for
in any study of the microbiome in humans. It is also evident
that the microbiome contains considerable functional redun-
dancy which allows it to maintain stability in the face of dietary
shifts*’; this was exemplified by the work of Reichardt and
colleagues on short-chain fatty acid production®.

Caloric restriction

The challenges that dietary studies face are illustrated by an
extreme dietary strategy: fasting. Although changes in micro-
biota diversity and composition have been described in anorexia
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nervosa and related eating disorders, it has proven difficult
to disentangle cause from effect. It would be surprising if
fasting, if prolonged, did not impact the gut microbiome®;
what remains to be defined is whether there are microbiota
signatures specific for eating disorders that might play a role
in the pathogenesis of these disorders”’~®. Given the inter-
est that surrounds the potential role of the gut microbiome
in obesity, the participation of the microbiome in various
calorie-reducing strategies has been the subject of some study.
Fasting-induced changes in the microbiota have not only been
associated with beneficial metabolic effects’ but also have
demonstrated positive effects on intestinal inflammation’!
and even central nervous system disorders’>””. The possible
contribution of the microbiome to weight loss and the ben-
eficial metabolic impacts of bariatric surgery have also been
explored. A variety of changes in the fecal microbiome have
been demonstrated following gastric bypass and other bariatric
procedures and were summarized in a recent systematic review’".
Guo and colleagues concluded, on the basis of 12 animal experi-
ments and nine clinical studies, that four phyla—Bacteroidetes,
Fusobacteria, Verrucomicrobia, and Proteobacteria—increased
following bariatric surgery but that Firmicutes, Clostridiales,
Clostridiaceae, Blautia, and Dorea were reduced’”.

One potentially detrimental consequence of a limited or inad-
equate dietary intake is that bacteria may turn to host glycans in
the mucus layer as substitutes for dietary glycans, thereby upset-
ting the integrity of the mucus layer which is maintained, in
health, through specific bacteria—nutrient interactions’>’®. This
disruption of the mucus layer seems to be especially likely to
occur in fiber-deprived diets and may render the host more sus-
ceptible to pathogens’’. This is not to say that the degradation
of host glycans is inevitably deleterious, as exemplified by the
associations between Akkermansia muciniphilia and positive
health status’®.

Exercise

Similar challenges are found in attempting to assess the impact
of exercise on the microbiome given the almost universal link-
age between physical exercise and dietary habit as part of
what is referred to as a “healthy lifestyle”””. At one extreme,
professional athletes commonly consume much higher amounts
of protein which also impact on the composition of the
microbiome’’. Other interactions also complicate the effects
of exercise; for example, body habitus (lean versus obese)
significantly affected the impact of 6 weeks of endurance
exercise on microbial diversity and short-chain fatty acid
concentration®’; this finding may reflect diet-related changes in
the pre-exercise microbiota. Nevertheless, accumulating evidence
indicates that exercise has an independent effect on the
microbiome®'. For example, an increase in members of the
genus Veillonella has been identified among marathon run-
ners, and inoculation of these same bacterial taxa into mice was
shown to promote endurance by converting exercise-induced
lactate into propionate®”.

Other lifestyle factors
Other lifestyle factors, such as cigarette smoking®, alcohol
consumption®®, and recreational drug use®, have also been
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linked to changes in the microbiota. With respect to the first
of these, the oral microbiota has been of special interest* given
the known relationships between cigarette smoking and oral
cancer.

Clinical interventions

Fecal microbiota transfer

It has only been in the last decade or so that fecal microbiota
transplantation (FMT), though apparently employed on an
empiric basic for centuries (if not millennia), has achieved some
degree of scientific respectability. Most impressive have been
results in recurrent Clostridioides difficile—associated disease
(CDAD), where cure rates up to and in excess of 90% have been
reported®. Various preparations and delivery protocols have
been employed with some differences in apparent efficacy”;
what remains to be determined is what components of the trans-
planted fecal microbiota are truly essential for efficacy. FMT has
been widely used on an empiric basis in a host of other indica-
tions, and instructions for the performance of FMT at home
can even be found on the internet. This practice is ill advised:
recent reports of severe systemic infections and even death
following FMT remind us of the potential hazards of this
therapy”’’. It is notable that results from the use of FMT in
other indications are far less impressive than those reported in
CDAD. This should come as no surprise as one has now strayed
from a disorder caused by a single organism to ones of vary-
ing phenotype where, despite considerable efforts, the precise
role of the microbiome in etiology remains unclear. Thus,
although systematic reviews and some individual trials suggest
efficacy for FMT in ulcerative colitis”~* and irritable bowel
syndrome (IBS)™, results from individual studies provide
a far from clear-cut picture; some report either no benefit or
even inferior outcomes for FMT”=”. FMT is clearly a power-
ful tool but a very blunt instrument; it is a technology in need of
considerable refinement once one strays from CDAD. Results
in more complex polygenic diseases will undoubtedly require
a much more tailored and personalized approach which ulti-
mately should involve the definition of the microbial cocktail
that is most effective for each phenotype'”. The small intestinal
microbiome has long been recognized to play a pivotal role in
the pathogenesis of the symptomatology of hepatic encepha-
lopathy; limited clinical trial data suggest that FMT may also
have a role here'’’. The microbiome may play a more funda-
mental role in the etiology of non-alcoholic fatty liver disease
(NAFLD) and its more advanced manifestation, non-alcoholic
steatohepatitis'’?;  here, microbiome modulation, including
FMT, holds promise'**!*; clinical trials are awaited. It must
also be remembered that the gut microbiome includes organ-
isms other than bacteria, such as viruses'”, which therefore may
be transmitted via or influenced by FMT "%,

FMT is not without risk. Not only can infectious agents be
transmitted (as illustrated by recent instances of transmittal of
extended-spectrum beta-lactamase—producing Escherichia coli
which proved fatal in one instance)'” but it is also theoretically
possible that the transfer of microbial signatures linked to dis-
ease states leads to the future emergence of these disorders
in the recipient, hence the call for greater regulation
of FMT"'".
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Another barrier to progress is our lack of understanding of how
exactly FMT works or how it might work in different clini-
cal situations'’. Clues are beginning to emerge, especially
in relation to efficacy in CDAD'''” but the exact bacte-
rial recipe required for benefits in CDAD or other potential
indications has yet to be defined. It seems likely that the
composition of the donated material will differ substantially
between disease states.

Antibiotics

A detailed discussion of the indications for and efficacy of
antibiotics in human health is beyond the scope of this review.
Inevitably, antibiotics that are given orally or that undergo
biliary excretion and enterohepatic circulation, regardless of
the route of administration, will impact on the gut microbiome
to a greater or lesser extent. These “innocent bystander” effects
may impair host resistance to pathogens, setting the stage
for CDAD or fungal overgrowth, and certain populations are
especially at risk'"”. Antibiotic resistance is a global public health
issue; global trends in resistance to one common pathogen,
Helicobacter pylori, are described as “alarming”''*. The human
gut microbiota has been described as “a reservoir of antibiotic
resistance genes”'"”; in one study 1,093 antibiotic resist-
ance genes were identified among apparently healthy Chinese
individuals'”®; the potential for horizontal and vertical transfer
of such resistance is a source of great concern.

Antibiotics mediate other actions through effects on the micro-
biota, including effects on inflammation, metabolism, and tum-
origenesis; the net impact, whether detrimental or beneficial,
is determined by antibiotic, microbial, and host factors''®'>.
The long-term implications for human health of these antibiotic
effects are only now being appreciated'”>'*. Infants seem to be
especially vulnerable; accumulating evidence indicates that
early and repeated exposure to antibiotics in infancy, even in
the very small doses that we ingest through the food chain
as a consequence of their use in animal husbandry, may pre-
dispose to the development of inflammatory and metabolic
diseases in later life'”''**, A call to arms to address the global
use of antibiotics is certainly appropriate'”.

Probiotics and prebiotics

The role of prebiotics and probiotics in gastrointestinal health
and disease has been the subject of a recent review by one of the
authors of this review'" and has also been the subject of a very
recent review in this journal*' and therefore will not be repeated
in detail here. The International Scientific Association for Pro-
biotics and Prebiotics defines a prebiotic as “a substrate that is
selectively utilized by host microorganisms conferring health
benefit”'*>. Probiotics are most commonly defined as “live
microorganisms which when administered in adequate amounts
confer a health benefit on the host”'*’. Therefore, in their
simplest terms, prebiotics are substances that act as substrates
for bacterial digestion and thus proliferation and lead to the
generation of metabolites, such as short-chain fatty acids, that are
beneficial to the host'*, whereas probiotics are live organisms
that engage in beneficial interactions with the host.

Substances with prebiotic effects may be found in cereals
as well as in plants such as onions, garlic, bananas, chicory
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root, and Jerusalem artichokes but typically are present at low
levels and may not exert prebiotic effects in these forms'®.
Fructo-oligosaccharides (FOSs) are known to be present in
about 36,000 varieties of plants, and wheat is a major source
of fructans. More biologically active and selective prebiotics
include galacto-oligosaccharides (GOSs), FOSs, oligofructose
(OF), chicory fiber, and inulin. Human milk oligosaccharides
are important prebiotics provided in breast milk to infants and
promote the proliferation of Bifidobacteria and, in this manner,
have been linked to a number of health benefits'*®. Other compo-
nents of breast milk also exert beneficial impacts on the infant’s
microbiome and immune system'*’-'*, Research on prebiotics
currently includes a focus on the development of highly
selective “‘designer” prebiotics targeted to impact on spe-
cific taxa within gut microbiota; others question the wisdom
of the importance or, indeed, the feasibility of the selectivity
approach given the functional redundancy that is inherent to the
gut microbiome'**!4°,

Of late, clinical studies on prebiotics have a strong empha-
sis on metabolic outcomes such as blood glucose regulation,
calcium homeostasis, and weight loss'**'**'*!. Immunological
(for example, enhancing antibody responses to vaccines, pro-
moting anti-inflammatory cytokine profiles)'*'*>, neurological
(some benefits in terms of mood and cognition)'*, cardiovas-
cular (improvement in lipid profiles)'*>, and gastrointestinal
effects have also been studied; notable examples are effects
on colon transit and benefits in IBS®'.

Probiotics have been lauded for centuries for a host of ben-
eficial effects; most await confirmation in high-quality clinical
trials'**"*!. Nevertheless, a considerable volume of basic science
research attests to the ability of various probiotic strains to
engage with the mucosal immune system, modulate host metab-
olism, and even influence gut neuromuscular function""'*.
More remote effects on the liver and central nervous
system have also been demonstrated for orally ingested
probiotics**!*>., We now have a considerable understanding of
how probiotics interact with the host to generate these effects;
for example, the molecular basis of the anti-inflammatory effects
of certain species of Bifidobacteria have been described in
great detail in elegant in vitro and animal studies'*.

As ever, the situation in humans is less straightforward and
recent studies emphasize the complexity of the interactions
between the administered probiotic, commensal microbiota,
and the host that determine the ability of the probiotic to gain a
foothold in the gut, colonize, and exert its effects'*’'*. A vision
of a probiotic as simply displacing “bad” bacteria is clearly
Very naive.

Of the myriad clinical claims that have been made for probiot-
ics, a few pass muster and have been detailed in several recent
reviews and meta-analyses'*"*!. The most consistent benefits
have been described in the prevention or treatment (or both) of
diarrhea in children'*'""", antibiotic-associated diarrhea'”"'>?,
necrotizing enterocolitis', IBS', and some phenotypes of
inflammatory bowel disease'™"'¥". It must be stressed that these
are aggregate results; though stating that probiotics, in general,
have an effect, conclusions are unable to provide direction to
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the clinician on a specific preparation for a given indication'’.
Results from individual studies are inconsistent, and major
deficits in study design often limit interpretability. Given
the tremendous inter-individual variability in the composi-
tion of the gut microbiome, it may be unrealistic to expect
consistent results from a given microbial strategy in any
disease state. Efforts to define what microbial or host factors
determine responses could pave the way toward “personalized
bacteriotherapy”. There is much to be done.

Probiotics and probiotics may also be combined as synbiot-
ics; although this concept is attractive in theory and synbiotic
preparations have enjoyed some notable successes'™, synergy
is not inevitable'™ nor is it always possible to tease out the
relative contributions of probiotic or prebiotic to any observed
benefit.

Pharmabiotics

The term “pharmabiotic” has been coined to encompass any
material with potential health benefit that can be mined from
microbiota, microbiota—host, or microbiota—dietary interac-
tions in the gut'*“'®'; therefore, it includes not just live organ-
isms but dead or altered organisms as well as bacterial
products or metabolites. Some concrete examples include bac-
terially produced natural antibiotics, bacteriocins'®’, genetically
modified organisms'®*'**, bacteriophages'*-'*°, and short-chain
fatty acids'®’. E. coli has been engineered to exert a variety
of effects, including overproducing AI-2 signaling molecules
and thereby beneficially tilting the Firmicutes/Bacteroidetes
ratio in a mouse model of streptomycin-induced dysbiosis'®.
Vaccination against Vibrio cholerae infection in the gut has
been achieved with E. coli overexpressing both AI-2 and the
genus-specific autoinducer-1, CA-1'"; in another example, an
engineered E. coli seeks and kills Pseudomonas aeruginosa via
quorum sensing and expression of antimicrobial peptides'”’.
In another approach, the exonuclease Cas3—clustered regu-
larly interspaced short palindromic repeats (CRISPR)-associated
protein 3—from type I systems was engineered into a probi-
otic to selectively and efficiently kill pathogenic bacteria with
specific genetic properties'”".

Though still rather new in terms of clinical application,

these and other technologies offer exciting possibilities for
microbiota modulation in the future and may be vital to
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the resolution of the antibiotic crisis that we currently face.
Evolving approaches such as CRISPR-based technologies have
revolutionized genome editing and have already been applied
to the development of novel antimicrobial strategies'’*~""*.

Impact of non-antibiotic drugs on the microbiome

Interventions that modulate intrinsic defense mechanisms
against bacterial colonization can be predicted to alter micro-
biota composition. Acid suppression induced by proton pump
inhibitors (PPIs) has been variably but not consistently linked
to a predisposition to Clostridioides difficile infection, enteric
infections, and small intestinal bacterial overgrowth'”>!"°.
Studies of human feces have indeed demonstrated a decrease
in Clostridiales and an increase in Actinomycetales, Micrococ-
caceae, and Streptococcaceae among PPI users; these changes
were previously associated with an increased susceptibility to
this feared complication of antibiotic use'”’~'". Similarly, drugs
that alter motility and intestinal transit, of which there are many,
may also alter microbiota composition'®. It is likely that many
other drugs engage with the microbiota with resultant enhance-
ment or reduction in efficacy or induction of side effects'’”'*!,
yet another fertile field for future microbiome research.

Conclusions

The study of the human gut microbiome has emerged as one of
the hottest areas of biology and biomedicine and continues to
yield tantalizing insights into the contributions of our microbial
fellow travelers to health and disease. Accordingly, the modula-
tion of the microbiome to prevent or treat disease has attracted
considerable attention, and various strategies have emerged.
In most instances, however, progress has been hampered
by a lack of clarity on the precise role of the microbiome
in a given disorder, variations in human disease phenotype,
and variability in formulation and delivery of putative thera-
pies. Progress on all fronts is required to move microbiota
modulation to the forefront of medical practice.
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